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Definition and criterion

A sequence of numbers (an) is arithmetic if the difference between
two consecutive terms is a constant number. Intuitively, to go from
one term to the next one, we always add the same number.
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A sequence of numbers (an) is arithmetic if the difference between
two consecutive terms is a constant number. Intuitively, to go from
one term to the next one, we always add the same number.

Definition

A sequence of numbers (an) is arithmetic if, for any positive integer n,
an+1 − an = d where d is a fixed real number, called the common
difference of the sequence.
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Definition and criterion

A sequence of numbers (an) is arithmetic if the difference between
two consecutive terms is a constant number. Intuitively, to go from
one term to the next one, we always add the same number.

Definition

A sequence of numbers (an) is arithmetic if, for any positive integer n,
an+1 − an = d where d is a fixed real number, called the common
difference of the sequence. We can also write that

an+1 = an + d .

This equality is called the recurrence relation of the sequence.
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Relations between terms

Proposition

For any positive integer n, an = a1 + (n − 1)× d. This equality is
called the explicit definition of the sequence.
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Relations between terms

Proposition

For any positive integer n, an = a1 + (n − 1)× d. This equality is
called the explicit definition of the sequence.

Proof.

First, this equality is true when n = 1, as

a1 = a1 + 0 × d = a1 + (1 − 1)× d .
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Relations between terms

Proposition

For any positive integer n, an = a1 + (n − 1)× d. This equality is
called the explicit definition of the sequence.

Proof.

First, this equality is true when n = 1, as

a1 = a1 + 0 × d = a1 + (1 − 1)× d .

Now, suppose that it is true for a value n = k , meaning that
ak = a1 + (k − 1)× d .
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Relations between terms

Proposition

For any positive integer n, an = a1 + (n − 1)× d. This equality is
called the explicit definition of the sequence.

Proof.

First, this equality is true when n = 1, as

a1 = a1 + 0 × d = a1 + (1 − 1)× d .

Now, suppose that it is true for a value n = k , meaning that
ak = a1 + (k − 1)× d . Then, from the definition of the sequence,

ak+1 = ak + d = a1 + (k − 1)× d + d = a1 + k × d .
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Relations between terms

Proposition

For any positive integer n, an = a1 + (n − 1)× d. This equality is
called the explicit definition of the sequence.

Proof.

First, this equality is true when n = 1, as

a1 = a1 + 0 × d = a1 + (1 − 1)× d .

Now, suppose that it is true for a value n = k , meaning that
ak = a1 + (k − 1)× d . Then, from the definition of the sequence,

ak+1 = ak + d = a1 + (k − 1)× d + d = a1 + k × d .

So the formula is true for n = k + 1 too.
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Relations between terms

Proposition

For any positive integer n, an = a1 + (n − 1)× d. This equality is
called the explicit definition of the sequence.

Proof.

First, this equality is true when n = 1, as

a1 = a1 + 0 × d = a1 + (1 − 1)× d .

Now, suppose that it is true for a value n = k , meaning that
ak = a1 + (k − 1)× d . Then, from the definition of the sequence,

ak+1 = ak + d = a1 + (k − 1)× d + d = a1 + k × d .

So the formula is true for n = k + 1 too. So it’s true for n = 0, n = 1,
n = 2, n = 3, etc, for all values of n.
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Relations between terms

Proposition

For any two positive integers n and m, an = am + (n − m)× d.
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Relations between terms

Proposition

For any two positive integers n and m, an = am + (n − m)× d.

Proof.

From the explicit definition of the sequence (an),
an = a1 + (n − 1)× d and am = a1 + (m − 1)× d ,
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Relations between terms

Proposition

For any two positive integers n and m, an = am + (n − m)× d.

Proof.

From the explicit definition of the sequence (an),
an = a1 + (n − 1)× d and am = a1 + (m − 1)× d ,so
an−am = (a1+(n−1)×d)−(a1+(m−1)×d) = n×d−m×d = (n−m)d .
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Relations between terms

Proposition

For any two positive integers n and m, an = am + (n − m)× d.

Proof.

From the explicit definition of the sequence (an),
an = a1 + (n − 1)× d and am = a1 + (m − 1)× d ,so
an−am = (a1+(n−1)×d)−(a1+(m−1)×d) = n×d−m×d = (n−m)d .
Therefore, an = am + (n − m)× d .
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Limit when n approaches +∞

Theorem

The limit of an arithmetic sequence (an) of common difference d
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Limit when n approaches +∞

Theorem

The limit of an arithmetic sequence (an) of common difference d

is equal to +∞ when d > 0 ;
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Limit when n approaches +∞

Theorem

The limit of an arithmetic sequence (an) of common difference d

is equal to +∞ when d > 0 ;

is equal to −∞ when d < 0 ;
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Limit when n approaches +∞

Theorem

The limit of an arithmetic sequence (an) of common difference d

is equal to +∞ when d > 0 ;

is equal to −∞ when d < 0 ;

is equal to a1, trivially, if d = 0.
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Limit when n approaches +∞

Proof.

Suppose that a1 > 0 and d > 0, and consider any real number
K . Then, the inequation an > K , or a1 + (n − 1)d > K , is solved
by any positive integer n such that n >

K−a1
d + 1. This means

that for any real number K , there exist some integer N such that
for any n ≥ N, aN > K . This is exactly the definition of the fact
that lim an = +∞.
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Limit when n approaches +∞

Proof.

Suppose that a1 > 0 and d > 0, and consider any real number
K . Then, the inequation an > K , or a1 + (n − 1)d > K , is solved
by any positive integer n such that n >

K−a1
d + 1. This means

that for any real number K , there exist some integer N such that
for any n ≥ N, aN > K . This is exactly the definition of the fact
that lim an = +∞.

Suppose that a1 > 0 and d < 0, and consider any real number
K . Then, the inequation an < K , or a1 + (n − 1)d < K , is solved
by any positive integer n such that n >

K−a1
d + 1. This means

that for any real number K , there exist some integer N such that
for any n ≥ N, aN < K . This is exactly the definition of the fact
that lim an = −∞.
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Limit when n approaches +∞

Proof.

Suppose that a1 > 0 and d > 0, and consider any real number
K . Then, the inequation an > K , or a1 + (n − 1)d > K , is solved
by any positive integer n such that n >

K−a1
d + 1. This means

that for any real number K , there exist some integer N such that
for any n ≥ N, aN > K . This is exactly the definition of the fact
that lim an = +∞.

Suppose that a1 > 0 and d < 0, and consider any real number
K . Then, the inequation an < K , or a1 + (n − 1)d < K , is solved
by any positive integer n such that n >

K−a1
d + 1. This means

that for any real number K , there exist some integer N such that
for any n ≥ N, aN < K . This is exactly the definition of the fact
that lim an = −∞.

The last situation, when d = 0, is obvious, as the sequence is
constant, with all terms equal to a1.
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Sums of consecutive terms

Theorem

Let (an) be an arithmetic sequence, The sum Sn of all the terms
between a1 and an, Sn = a1 + a2 + . . .+ an−1 + an, or more precisely
S =

∑n
i=1 ai , is given by the formula

S = n ×
a1 + an

2
.
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Sums of consecutive terms

Proof.

The trick to prove this formula is to write the sum in two different
ways, one based on the first term, the other based on the last term.
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Sums of consecutive terms

Proof.

The trick to prove this formula is to write the sum in two different
ways, one based on the first term, the other based on the last term.
Using the formula of proposition 1.2, we have, on one hand

Sn = a1 + a2 + . . .+ an−1 + an

Sn = a1 + a1 + d + . . .+ a1 + (n − 2)d + a1 + (n − 1)d

Episode 08 – Arithmetic sequences



Sums of consecutive terms

Proof.

The trick to prove this formula is to write the sum in two different
ways, one based on the first term, the other based on the last term.
Using the formula of proposition 1.2, we have, on one hand

Sn = a1 + a2 + . . .+ an−1 + an

Sn = a1 + a1 + d + . . .+ a1 + (n − 2)d + a1 + (n − 1)d

and on the other hand

Sn = a1 + a2 + . . .+ an−1 + an

Sn = an − (n − 1)d + an − (n − 2)d + . . .+ an − d + an.
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Sums of consecutive terms

Proof. (continued).

When we add these two expression of Sn, all terms involving d are
cancelled and we end up with as many times the sum a1 + an are
there were of terms in Sn, so
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Sums of consecutive terms

Proof. (continued).

When we add these two expression of Sn, all terms involving d are
cancelled and we end up with as many times the sum a1 + an are
there were of terms in Sn, so

2Sn = n(am + an)

Sn = n ×
a1 + an

2
.
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