Definition and criterion Relations between terms Limit when n approaches $+\infty$ Sums of consecutive terms

Session 09 – Geometric sequences

European section – Season 2

Definition and criterion Relations between terms Limit when n approaches $+\infty$ Sums of consecutive terms

A sequence of numbers (b_n) is geometric if the quotient between two consecutive terms is a constant number. Intuitively, to go from one term to the next one, we always multiply by the same number.

A sequence of numbers (b_n) is geometric if the quotient between two consecutive terms is a constant number. Intuitively, to go from one term to the next one, we always multiply by the same number.

Definition Geometric sequence

A sequence of numbers (b_n) is geometric if, for any positive integer n, $\frac{b_{n+1}}{b_n}=q$ where q is a fixed real number, called the *common ratio* of the sequence. We can also write that $b_{n+1}=b_n\times q$. This equality is called the *recurrence relation* of the sequence.

For any positive integer n, $b_n = b_1 \times q^{n-1}$. This equality is called the *explicit definition* of the sequence.

For any positive integer n, $b_n = b_1 \times q^{n-1}$. This equality is called the *explicit definition* of the sequence.

Proof. First, this equality is true when n = 0, as

$$b_1 = b_1 \times q^0 = b_1 \times q^{1-1}$$
.

For any positive integer n, $b_n = b_1 \times q^{n-1}$. This equality is called the *explicit definition* of the sequence.

Proof. First, this equality is true when n = 0, as

$$b_1 = b_1 \times q^0 = b_1 \times q^{1-1}$$
.

Now, suppose that it is true for a value n = k, meaning that $b_k = b_1 \times q^{k-1}$.

For any positive integer n, $b_n = b_1 \times q^{n-1}$. This equality is called the *explicit definition* of the sequence.

Proof. First, this equality is true when n = 0, as

$$b_1 = b_1 \times q^0 = b_1 \times q^{1-1}$$
.

Now, suppose that it is true for a value n = k, meaning that $b_k = b_1 \times q^{k-1}$. Then, from the definition of the sequence,

$$b_{k+1} = b_k \times q = b_1 \times q^{k-1} \times q = b_1 + \times q^k.$$

For any positive integer n, $b_n = b_1 \times q^{n-1}$. This equality is called the *explicit definition* of the sequence.

Proof. First, this equality is true when n = 0, as

$$b_1 = b_1 \times q^0 = b_1 \times q^{1-1}$$
.

Now, suppose that it is true for a value n = k, meaning that $b_k = b_1 \times q^{k-1}$. Then, from the definition of the sequence,

$$b_{k+1} = b_k \times q = b_1 \times q^{k-1} \times q = b_1 + \times q^k.$$

So the formula is true for n = k + 1 too.

For any positive integer n, $b_n = b_1 \times q^{n-1}$. This equality is called the *explicit definition* of the sequence.

Proof. First, this equality is true when n = 0, as

$$b_1 = b_1 \times q^0 = b_1 \times q^{1-1}$$
.

Now, suppose that it is true for a value n = k, meaning that $b_k = b_1 \times q^{k-1}$. Then, from the definition of the sequence,

$$b_{k+1} = b_k \times q = b_1 \times q^{k-1} \times q = b_1 + \times q^k.$$

So the formula is true for n = k + 1 too. So it's true for n = 0, n = 1, n = 2, n = 3, etc, for all values of n.

For any two positive integers n and m, $b_n = b_m \times q^{n-m}$.

For any two positive integers n and m, $b_n = b_m \times q^{n-m}$.

Proof. From the explicit definition of the sequence (b_n) , $b_n = b_1 \times q^{n-1}$ and $b_m = b_1 \times q^{m-1}$, so

For any two positive integers n and m, $b_n = b_m \times q^{n-m}$.

Proof. From the explicit definition of the sequence (b_n) , $b_n = b_1 \times q^{n-1}$ and $b_m = b_1 \times q^{m-1}$, so

$$\frac{b_n}{b_m} = \frac{b_1 \times q^{n-1}}{b_m = b_1 \times q^{m-1}} = \frac{q^{n-1}}{q^{m-1}} = q^{n-m}.$$

For any two positive integers n and m, $b_n = b_m \times q^{n-m}$.

Proof. From the explicit definition of the sequence (b_n) , $b_n = b_1 \times q^{n-1}$ and $b_m = b_1 \times q^{m-1}$, so

$$\frac{b_n}{b_m} = \frac{b_1 \times q^{n-1}}{b_m = b_1 \times q^{m-1}} = \frac{q^{n-1}}{q^{m-1}} = q^{n-m}.$$

Therefore, $b_n = b_m \times q^{n-m}$.

The limit of a geometric sequence (b_n) of common ratio q and first term b_1

• is equal to 0, trivially, if $b_1 = 0$;

- is equal to 0, trivially, if $b_1 = 0$;
- is equal to b_1 , trivially, if r = 1;

- is equal to 0, trivially, if $b_1 = 0$;
- is equal to b_1 , trivially, if r = 1;
- is equal to $+\infty$ when $b_1 > 0$ and q > 1;

- is equal to 0, trivially, if $b_1 = 0$;
- is equal to b_1 , trivially, if r = 1;
- is equal to $+\infty$ when $b_1 > 0$ and q > 1;
- is equal to $-\infty$ when $b_1 < 0$ and q > 1;

- is equal to 0, trivially, if $b_1 = 0$;
- is equal to b_1 , trivially, if r = 1;
- is equal to $+\infty$ when $b_1 > 0$ and q > 1;
- is equal to $-\infty$ when $b_1 < 0$ and q > 1;
- is equal to 0 if $q \in]-1;1[;$

- is equal to 0, trivially, if $b_1 = 0$;
- is equal to b_1 , trivially, if r = 1;
- is equal to $+\infty$ when $b_1 > 0$ and q > 1;
- is equal to $-\infty$ when $b_1 < 0$ and q > 1;
- is equal to 0 if $q \in]-1;1[;$
- doesn't exist when $r \leq -1$.

The limit of a geometric sequence (b_n) of common ratio q and first term b_1

- is equal to 0, trivially, if $b_1 = 0$;
- is equal to b_1 , trivially, if r = 1;
- is equal to $+\infty$ when $b_1 > 0$ and q > 1;
- is equal to $-\infty$ when $b_1 < 0$ and q > 1;
- is equal to 0 if $q \in]-1;1[;$
- doesn't exist when $r \leq -1$.

In the last situation, the sequence is said to be *divergent*.

• If $b_1 = 0$ or if r = 1, the result is obvious: in both cases, the sequence is constant!

• If $b_1 > 0$ and q > 1, consider any real number K. The inequation $b_n > K$, or $b_1 \times q^{n-1} > K$ is equivalent to

$$q^{n-1} > \frac{K}{b_1}$$

$$\ln(q^{n-1}) > \ln\left(\frac{K}{b_1}\right)$$

$$(n-1)\ln q > \ln K - \ln b_1$$

$$(n-1) > \frac{\ln K - \ln b_1}{\ln q}$$

$$n > \frac{\ln K - \ln b_1}{\ln q} + 1$$

This means that for any real number K, there exist some integer N such that for any $n \ge N$, $b_N > K$. This is exactly the definition of the fact that $\lim b_n = +\infty$.

If b₁ < 0 and q > 1, consider any real number K. The inequation b_n < K, or b₁ × qⁿ⁻¹ < K is equivalent to

$$q^{n-1} > \frac{K}{b_1}$$

$$\ln(q^{n-1}) > \ln\left(\frac{K}{b_1}\right)$$

$$(n-1)\ln q > \ln K - \ln b_1$$

$$(n-1) > \frac{\ln K - \ln b_1}{\ln q}$$

$$n > \frac{\ln K - \ln b_1}{\ln q} + 1$$

This means that for any real number K, there exist some integer N such that for any $n \ge N$, $b_N < K$. This is exactly the definition of the fact that $\lim b_n = -\infty$.

• If $q \in]-1$; 1[, consider any positive number ε . The inequation $|b_n| < \varepsilon$, or $|b_1| \times |q|^{n-1} < \varepsilon$ is equivalent to

$$\begin{aligned} |q|^{n-1} &< \frac{\varepsilon}{|b_1|} \\ \ln(|q|^{n-1}) &< \ln\left(\frac{\varepsilon}{|b_1|}\right) \\ (n-1)\ln|q| &< \ln\varepsilon - \ln|b_1| \\ (n-1) &> \frac{\ln\varepsilon - \ln|b_1|}{\ln|q|} \\ n &> \frac{\ln\varepsilon - \ln|b_1|}{\ln|q|} + 1 \end{aligned}$$

This means that for any positive real number ε , there exists some integer N such that for any $n \ge N$, $|b_N| < \varepsilon$. This is exactly the definition of the fact that $\lim b_n = 0$.

• Finally when $r \le -1$, the sequence is alternating between positive and negative terms, whose absolute values approach $+\infty$. So the sequence has no limit.

Theorem Sum of consecutive terms

Let (b_n) be an geometric sequence, The sum S of the n first consecutive terms, defined as $S = b_1 + b_2 + \ldots + b_{n-1} + b_n$, or more precisely $S = \sum_{i=1}^n b_i$, is given by the formula

Theorem Sum of consecutive terms

Let (b_n) be an geometric sequence, The sum S of the n first consecutive terms, defined as $S = b_1 + b_2 + \ldots + b_{n-1} + b_n$, or more precisely $S = \sum_{i=1}^n b_i$, is given by the formula

$$S=b_1\frac{1-q^n}{1-q}.$$

$$S = b_1 + b_1 \times q + ... + b_1 \times q^{n-2} + b_1 \times q^{n-1}$$

$$S = b_1 + b_1 \times q + \ldots + b_1 \times q^{n-2} + b_1 \times q^{n-1}$$

= $b_1 \times (1 + q + \ldots + q^{n-2} + q^{n-1}).$

$$S = b_1 + b_1 \times q + \ldots + b_1 \times q^{n-2} + b_1 \times q^{n-1}$$

= $b_1 \times (1 + q + \ldots + q^{n-2} + q^{n-1}).$

But, by a simple expansion, we see that

$$(1+q+\ldots+q^{n-2}+q^{n-1})(1-q)=$$

$$S = b_1 + b_1 \times q + \ldots + b_1 \times q^{n-2} + b_1 \times q^{n-1}$$

= $b_1 \times (1 + q + \ldots + q^{n-2} + q^{n-1}).$

But, by a simple expansion, we see that

$$(1+q+\ldots+q^{n-2}+q^{n-1})(1-q)=1-q^n$$
 and so

$$S = b_1 + b_1 \times q + \ldots + b_1 \times q^{n-2} + b_1 \times q^{n-1}$$

= $b_1 \times (1 + q + \ldots + q^{n-2} + q^{n-1}).$

But, by a simple expansion, we see that

$$(1+q+\ldots+q^{n-2}+q^{n-1})(1-q)=1-q^n$$
 and so

$$S=b_1\frac{1-q^n}{1-q}.$$