Épreuve de section européenne

The limit of $\frac{\sin x}{x}$ when x approaches 0

Let O be the center of a circle whose radius is unity.

Let $\operatorname{arc} AM = \operatorname{arc} AM' = x$, and let MT and M'T be tangents drawn to the circle at M and M'. From Geometry, MPM' < MAM' < MTM'; or $2\sin x < 2x < 2\tan x$.

Dividing through by $2\sin x$, we get

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}.$$

If now x approaches the limit zero, $\lim_{x\to 0} \frac{x}{\sin x}$ must lie between the constant 1 and $\lim_{x\to 0} \frac{1}{\cos x}$, which is also 1.

Therefore
$$\lim_{x\to 0} \frac{x}{\sin x} = 1$$
, or $\lim_{x\to 0} \frac{\sin x}{x} = 1$

From Elements of the Differential and Integral Calculus by William Anthony Granville

Questions

- 1. Explain the meaning of the notation MPM' used in this document.
- **2.** Prove the inequalities MPM' < MAM' < MTM' and explain how they induce $2\sin x < 2x < 2\tan x$.
- **3.** Is it always correct to divide by $\sin x$?
- **4.** Prove that $\lim_{x\to 0} \frac{1}{\cos x} = 1$.
- **5.** What is the main theorem used in this proof?