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Season 3
Gaussian primes Episode 04
Time frame 2 periods

Prerequisites : Notions about Gaussian integers.

Objectives :

e Review the concept of prime numbers in the context of Gaussian integers.

e Check the prime decomposition property on a few examples and find ways to decide if
a Gaussian integer is prime.

Materials :

e Lesson about Gaussian primes and unique factorization.

e Beamer about Gaussian primes with the two main questions and the first problem
to be solved, an empty lattice and the properties about Gaussian primes and unique
factorization.

1 - Lecture about Gaussian primes 15 mins

The concept of Gaussian prime and the notions of conjugate and norm are introduced.
Two questions are asked : What Gaussian integers are prime and, in particular, are all
prime integers Gaussian primes? Is it still possible to decompose uniquely any Gaussian
integer into a product of Gaussian primes?

2 - Working together to get a bigger picture 40 mins

The class, working in teams, has to study all the Gaussian numbers with a and b between
0 and 10. When a team knows for sure if one number is prime, someone goes to the board
to color the adequate point in red if it’s prime, in black if it’s composite. When all points
are done, the teacher explains that if p is prime, —p, ip and —ip are also prime.

An exercise sheet helps them find out the answers.

3 - How to recognize Gaussian primes 30 mins

Students are still working in teams. They have to find a rule for a Gaussian integer to
be prime, working first on real integers (other Gaussian primes 11, 19 and 23 are given),
then other Gaussian integers a + bi.

4 - End of the lecture about Gaussian primes 15 mins

The rule of primality is given, and the theorem about unique factorization.
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In this lesson, we study the concepts of divisibility and primality in the set Z[i] of Gaussian
integers. As always, we say that a Gaussian integer e divides another one g if there exists
a Gaussian integer f such that g =e x f.

Any Gaussian integer is obviously divisible by 1, —1, ¢ and —i, as (—1) x (—1) = 1 and
i x (—1) = 1. We call these four special numbers the units of Z[i]. Moreover, any Gaussian
integer ¢ is divisible by 1, —1, i, —i, g, —g, —ig and ig. A Gaussian prime is a Gaussian
integer that is not divisible by an integer different from these ones. An equivalent definition
is given below.

Definition 1

A Gaussian integer g is not prime if it can be written as a non-trivial product g = e x f,
where neither e nor f are units.

To study primality in Z[i], two other concepts are useful, the conjugate of a Gaussian
integer and its norm.

Definition 2
The conjugate of a Gaussian integer g = a + bi is the Gaussian integer g = a — bi.

Definition 3

The product of a Gaussian intfeger g = a + bi and its conjugate g = a — bi is A non-
negative real number, as

gxg=(a+bi)(a—bi)=a®— (bi)? =a*+V*

This number is defined as the norm of g, noted N(g).

Graphically, the conjugate is the symmetric of the point around the horizontal axis and
the norm of a Gaussian integer ¢ is the square of the distance between the points 0 and
g. It’s easy to see that this is also equal to the square of distance between 0 and g, so

N(g) = N(9)-



Season 3 e Episode 04 ¢ Gaussian primes 2

g : a —l—bz
NG = VTR
RURN V/N(g) =+/N(g)

Theorem 1

A Gaussian integer g = a + bi is prime if and only if

e one of a and b is zero and the other is a prime of the form 4n + 3 or its negative
—(4n+3);

e or both are nonzero and the norm of g, N(g) = a? + b* is prime.

Proof. We will just prove the first case, specifically when b = 0 and a + bi = a € Z. To do so,
we will use two lemmas.

Lemma 1 If a = 4n+ 1, there exists two integers  and y such that a = 22 +y? = (x+iy)(z —iy).
This result is known as “Fermat’s theorem on sums of two squares.”

Lemma 2 No sum of integer squares can be written 4n + 3.

It’s obvious that @ must be a prime integer, and that if a = 4n or 4n + 2 it is not prime, as it
is divisible by 2. If @ = 4n 4 1, Fermat’s theorem on sums of two squares assures us that there
exists two integers z and y such that a = 2?4+ y? = (z +iy)(x — iy), so a is composite. Therefore,
if @ is prime, it must be a prime integer of the form 4n + 3.

We must now prove the reciprocal : if @ is a prime integer of the form 4n + 3, then it’s a Gaussian
prime. Suppose that ¢ = a+ 0i for a prime integer a = 4n + 3 and that it can be factored g = hk.
Then a? = N(g) = N(h)N(k). If the factorization is non-trivial, then N(h) = N(k) = a. But
h is not an integer, so its norm is of the form u? 4 v?. Then u? + v> = a = 4n + 3, which is
in contradiction with lemma 2. So the factorization must have been trivial and ¢ is a Gaussian
prime.

Examples : The following Gaussian integers are prime : 1414, 2414, 3, 3+ 2¢, 4+ 1, 5+ 24,
T+, 5440, 7,7+ 24, 6+ 55, 8+ 31, 8+ 51, 9 + 4u.

Theorem 2

The set Z[i] is a unique factorization domain : any Gaussian integer can be written as
a product of Gaussian primes, and this decomposition is unique except for reordering
or multiplication by units.
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Fill out the following multiplication table. In the upper right cells, you will put the
products g1g», and in the lower left cells, the products g;g5. What can you say about the
results in this table ?

g1 144 24 34 34 2i 44

g2

141

2+1

3+t

3+ 21

4+

Let a + b and ¢+ di be two Gaussian integers and x + yi their product.

Find a relation between z and a, b, ¢, d, and another between y and a, b, ¢, d.
Prove that there exist two Gaussian integers whose product is x — yi.

Prove that there exist two Gaussian integers whose product is y + xi.

Prove that there exist two GGaussian integers whose product is y — xi.

ahowobd-

Deduce from that table in exercise 1 and the previous properties a list of other
Gaussian integers that are not prime, by exhibiting in each case a non-trivial de-
composition.

The aim of this exercise is to prove that 3 is a Gaussian prime. To do so, suppose
that there exist two non-trivial Gaussian integers g; and go such that 3 = g;9,. We will
prove that one of these is a unit.

1. Let’s start with a few general properties that will be useful later on.

a. Prove that the only Gaussian integers g = a + bi whose norm N(g) = a® + V?
is equal to 1 are the units.

b. Prove that there are no Gaussian integer has a norm equal to 3.
c. What can you say about g when g is an integer ?
d. Prove that for any two Gaussian integers g and h, gh = gh.

2. Prove that 3 is the product of two other Gaussian integers.

Deduce that N(g1)N(g2) = 9.

4. Knowing that N(g;) and N(go) are positive integers, deduce the possible values for
these two numbers.

5. Conclude.

g



