	Season	3
Constructible polygons	Episode	07
	Time frame	2 periods

Prerequisites : Ruler and compass rules and methods

Objectives:

• study the constructibility of regular polygons.

Materials :

- Ruler
- Compas
- Task sheet
- Hints for the pentagon, 15-gon and 16-gon.
- Beamer

1 – The easy ones

Students work in pairs. They have to find the minimal number of actions needed to draw an equilateral triangle, a square, a regular hexagona, and a regular octogon. This part is marked over 10.

2 – The regular pentagon

The second task is to construct a regular pentagon. This part is marked over 10. Progressive hints are available on demand. Every hint asked by a group takes one point of the final mark.

3 – The regular pentadecagon

The third task is to construct a regular 15-gon. One hint may be given : use a pentagon and an equilateral triangle. This par is not marked

4 – The regular heptadecagon

The third task is to construct a regular 17-gon. A construction protocol is given to each student and has to be carried out. The end result is also marked over 10.

5 – Constructible polygons

Each group has to list all constructible polygons with a number of sides less than or equal to 20.

6 – Lecture : Some results about constructible polygons 15 mins

A quick history of the problem of constructible polygons, including Euclid's methods, Gauss' results and Gardner's link with the Sierpinski's binary sieve.

20 mins

15 mins

20 mins

20 mins

20 mins

Constructible polygons	Season	3
	Episode	07
	Document	Answer sheet

Part 1 – Construct some easy regular polygons			
Equilateral triangle	Square		
Regular Octogon	Regular hexago	n	

Construction of the pentagon

Try to find a way to construct a regular pentagon. If you don't manage, go to the teacher's desk and ask for a hint. The hints are progressive and cost 1 point over 10 each.

Construction of the pentadecagon

Try to find a way to construct a regular pentadecagon (with 15 equal sides). If you don't manage, go to the teacher's desk and ask for a hint. There is only one available hint and this part is not marked.

The heptadecagon : a construction protocol

Follow the following instructions to construct a regular heptadecagon.

- 1. Given an arbitrary point O, draw a circle centered on O and a horizontal diameter drawn through O.
- **2.** Call the right end of the diameter dividing the circle into a semicircle P_1 .
- **3.** Construct the diameter perpendicular to the original diameter by finding the perpendicular bisector OB, with B at the top of the circle.
- **4.** Construct J a quarter of the way up OB.
- **5.** Join JP_1 and find E on line segment OP_1 so that $\angle OJE$ is a quarter of $\angle OJP_1$.
- **6.** Find F on line OP_1 , but on the other side of O, so that $\angle EJF$ is 45 degrees.
- **7.** Construct the semicircle with diameter FP_1 , on the same side as J. This semicircle cuts OB at K.
- **8.** Draw a semicircle with center E and radius EK, on the same side as B and with both endpoints on OP_1 . This cuts the line segment OP_1 at N_4 .
- **9.** Construct a line perpendicular to OP_1 through N_4 . This line meets the original semicircle at P_4 .
- 10. You now have points P_1 and P_4 of a heptadecagon. Use P_1 and P_4 to get the remaining 15 points of the heptadecagon around the original circle by constructing P_1 , P_4 , P_7 , P_{10} , P_{13} , P_{16} , P_2 and so on.
- 11. Connect the adjacent points P_i for i = 1 to 17, forming the heptadecagon.

The constructible polygons

1. List all regular polygons with 20 or less sides that you think are constructible withe ruler and compass. Explain in a few words each construction.

2. A Fermat prime is a prime number of the form $F_n = 2^{2^n} + 1$, where *n* is a nonnegative integer. Compute the first five Fermat primes.

3. There is a connection between the constructible polygons and the Fermat prime. Try to find it.

Document 1 Hints for the construction of the regular pentagon

- **1.** Draw a circle in which to inscribe the pentagon and mark the center point *O*.
- **2.** Choose a point A on the circle that will serve as one vertex of the pentagon. Draw a line through O and A.
- **3.** Construct a line perpendicular to the line OA passing through point O. Mark its intersection with one side of the circle as the point B.
- **4.** Construct the point C as the midpoint of O and B.
- **5.** Draw a circle centered at C through the point A. Mark its intersection with the line OB (inside the original circle) as the point D.
- **6.** Draw a circle centered at A through the point D. Mark its intersections with the original circle as the points E and F.
- 7. Draw a circle centered at E through the point A. Mark its other intersection with the original circle as the point G.
- **8.** Draw a circle centered at F through the point A. Mark its other intersection with the original circle as the point H.